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The most probable velocity distribution function of each component, fa, of a 
nonequilibrium multispecies spherically symmetric system of particles (stellar 
plasma atmospheres and winds, stellar systems, pellet-fusion systems) is analyti- 
cally derived for the case in which each component is described by the first six 
moments o f f  a . This is achieved by the aid of a variational approach based on the 
requirement that the Boltzmann H function for the system be a minimum, 
subject to the constraints provided by the sets of six macroscopic parameters 
describing the nonequilibrium state. The use of the so-obtained velocity distribu- 
tion functions for the closure of the moment equations as well as for the 
calculation of their collisional terms (via the Fokker-Planck equation) is dis- 
cussed. The limitations on the maximum deviations from the equilibrium state 
which are consistent with the assumptions used are also indicated. 

KEY WORDS: Velocity distribution functions; plasmas-nonequilibrium; 
stellar systems-nonequilibrium; weakly interacting many-body systems. 

1. INTRODUCTION 

The knowledge of the velocity distribution functions of the various compo- 
nents constituting a physical system which is not in equilibrium is of great 
importance in both laboratory physics and astrophysics. This is particularly 
true in the case of particles obeying an inverse-square law of interactions 
(long range potentials), e.g., plasmas (solar corona, solar and stellar winds, 
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pellet-thermonuclear fusion) and stellar systems. It is only under very 
special conditions that such systems can be described by Maxwellian 
velocity distribution functions. 

One of the important uses of the velocity distribution functions is in 
the derivation of a closed set of macroscopic (fluid) equations which is 
required for the study of time-dependent nonhomogeneous systems. In such 
a case, they play a twofold role, namely: (i) they provide relationships 
between higher and lower moments of the distribution function and conse- 
quently close the otherwise infinite chain of equations; and (ii) they enable 
the calculation of analytical expressions for the terms representing the 
particle-particle interactions in the moment equations. 

In the familiar Chapman-Enskog kinetic scheme (see, e.g., Ref. 1), one 
represents the distribution function as a sum, f = f o = f ( l l + f ( 2 )  . . . .  
where fo is the Maxwellian and f(o (i = 1, 2 , . . .  ) are small perturbations 
(If(2) l << If(~')l <<faO). Then, one neglects fa (2) and the other smaller terms 
and solves an integrodifferential equation for fa (~). Using this solution 
(together with the Maxwellian) one obtains a set of equations for the 
particle density n a, streaming velocity, (v)a and random kinetic energy, E~; 
the heat flux vector component q~, appearing in the energy equation is 
approximated by the value corresponding to the case in which all terms 
except the one proportional to the temperature gradient in the equation for 
qa are neglected. Eventually, a contribution due to nonzero relative stream 
velocities is also retained. Thus, only n, ,  (v)~, and E~ are treated on an 
equal footing. 

To vindicate this situation, a more general solution for fa than indi- 
cated above is required. For physical systems possessing spherical symme- 
try in the configuration space and azimuthal symmetry (about the radial 
direction) in velocity space, it is possible to construct such an approximate 
solution as follows: Assume that fa is gyrotropic and can be adequately 
represente d by a sum of zero-order Maxwellian distribution and the first 
three terms of an expansion in Legendre polynomials (e.g., Ref. 2): f~(V,/~) 

2 a = f~  + ~n~oan (V)Pn(I~) where en(/~) and aa(V) are Legendre polyno- 
mials and expansion coefficients (viz., polynomials), respectively. Then, (i) 
approximating the functions a a as a product of f~ by power series in V; 
(ii) retaining the first three terms for aJ, the first two terms for a~ and the 
first term for a~ in the corresponding power series; and (iii) imposing the 
conditions that ha, (v)~ and E, be not affected by the non-Maxwellian 
structure of fa, one can determine the coefficients in the expansions for af 
(i = 0, 1,2) and consequently the desired fa'S (see e.g., Refs. 3-5). These 
generalized velocity distribution functions have been heavily used by the 
last authors for the derivation (for each component, a) of a higher-order, 
closed set of six fluid equations for the moments n a ' ' ' ( a , r  where ~a,r 
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-- ((vr - (vr)) 4) - 3[((Vr -- (Vr))2)] 2 reflects the effect of a non-Maxwellian 
tail (excess or deficiency of particles as compared to a Maxwellian). 

Now, even though the derivation of the generalized expressions for fa 
as sketched above appears plausible and physically meaningful, a more 
rigorous kinetic derivation (i.e., a generalization of the Chapman-Enskog 
scheme) or a statistical derivation (i.e., a generalization of the variational 
approach used for the derivation of the equilibrium velocity distribution 
function) is highly desirable. 

Thus, in this paper, we use a more general, statistical approach for the 
derivation of nonequilibrium velocity distribution functions in spherically 
symmetric systems obeying an inverse-square law of interactions such as 
solar corona, stellar winds, large stellar systems and pellet-thermonuclear 
fusion. Thus, under circumstances in which relatively high temperatures 
and low densities prevail, Coulomb collisions are not efficient enough in 
order to produce thermodynamical or even local thermodynamical equilib- 
rium states. Because of the mathematical complexity of the problem, we are 
concerned with relatively small deviations from LTE (local Maxwellians). 
Thus, assuming that each component is adequately represented by its first 
six moments, n,, (V)a  , E~ . . .  ~,r, we look for the most probable velocity 
distribution functions f~ of the form f~ --- fa(na, (v)~, E~ . . .  ~a,~ ; V; r; t). To 
achieve this, we use a variational approach based on the requirement that 
Boltzmann's H function for the system be a minimum, subject to the 
constraints provided by the sets of six macroscopic parameters describing 
the nonequilibrium state. This procedure represents a generalization of the 
familiar statistical approach in which the Maxwellian is found to be the 
most probable velocity distribution function of each component in a system 
for which the H function is a minimum subject to only three constraints, 
namely the first three moments (n a, (v)~, and El). (See, e.g., Ref. 6.) The 
potential extension of this approach to the case of nonequilibrium physical 
systems along the path sketched above is mentioned, for example, in Refs. 
7 and 8. 

2. C A L C U L A T I O N S  

Consider a nonequilibrium many-body system (plasma, star cluster, 
etc.) which is spherically symmetric in configuration space and consists of a 
number of components (species) each of which is described by the follow- 
ing specific macroscopic quantities (viz., moments of fa): 

number density 

na(r, t) = f L(v, r, t) a3v (a) 
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radial mean velocity 

<vr> o = n 2'  f vrfo(v, r, 0 d3~ (2) 

random kinetic (i.e., thermal) velocity 

<(v - (v~)a) 2) = n~- ' f (v  - (v~))2fa d3v (3) 

radial flux of random energy 

q~,a(r, t) = (ma/a) f (v - (v~))2(v r - @r))fad3v (4) 

the fifth moment of f~ 

~a(r, t) = ns lf(v- (vr))4f~d3v (5) 

thermal anisotropy 

aa(r , t )=nz l f [ (v~- (v , ) )2 -v2] f~d3v=--ao- f l ,  (6) 

In the above six equations we used spherical polar coordinates, r, 0, 
and ~ as well as the notation v8 = % -  v• (because of the spherical 
symmetry). 

In the continuation, for convenience, we use the following new vari- 
ables: 

V -- v - (v~>~ (7) 

V~ =--(v - <Vr)a) r = V/~, V• = [(1 - ~2)/2]'/2V 

Here /~ is the cosine of the angle between the vector V and the radial 
direction. With these variables, Eqs. (1)-(6) read (for simplicity we omit the 
subscript a, indicating the specific plasma component): 

n = f f d a V  (1') 

<vr> = n- ' f v~ fd~V (2') 

<v~> = ~-  i f  V~fd3V (3') 

q~ = O.sm f V3~f d3V (4') 

= ,,-l fV~fd3V (5') 

and 

A = n - i f  V2P2( IQfd3V (6') 
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where P2(/0-=0.5(3/~ 2 -  1) is the Legendre polynomial of order two, f 
= f(V,  I~,r,t) and d3V = - V2 dt~dd~dV. 

Now, we want to find the most probable velocity distribution function 
of each component, fa, subject to the constraints provided by the six 
macroscopic parameters describing the nonequilibrium state, as indicated 
above. (We anticipate that the sought-for nonequilibrium distribution func- 
tions will not have Maxwellian shapes and will not satisfy the equilibrium 
conditions f f f[ ,  = fofb for all a and b.) 

To solve the problem posed above, we shall use a rather general 
variational approach by requiring that the Boltzmann H function be a 
minimum under our six restricting conditions. 

First, from the definitions 

H = ~ H a ,  Ha =--(falns (8) 
a 

it is seen that if we can minimize each H a we shall also minimize H. 
Second, using for the moment a discrete representation for fa, one can 

write the following expressions for H a and the six quantities defined by Eqs. 
(1')-(6'): 

H = ~ f in  f (9) 
i 

n = Z f  (10) 
i 

(Vr )=  n - ' ~ ,  Vd~if (11) 
i 

(V2) = n - l ~  V,.~ (12) 
i 

qr = 0.5m Z V/3#Ji (13) 
i 

~ = n - ' Z V ~  ,. (14) 
i 

A = r l - l Z  Vi2P2(~i)f (15) 
i 

Using now the method of the Lagrange multipliers we can write for 
each variablef the following equation: 

( ~ fk In fk - [Xifk + X2 Vk/~f~ + X3 l/~ff~ of 

-t- X4V4fk -t- ~k5Vk~. lk f  k "+" )t6V2p2( t~k)fk] = 0 (16)  

[The constants in the equations (10)-(15) have been included in the X's.] 
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Solving Eq. (16) for f and going back to the continuous function, we 

Alternatively, we can write Eq. (21) as 

f = fo + h~' [ 1 + (h; ' /h[)  V 2 + (h4/h[) va]Pof  ~ 

+ h~[1 + (X5/X~)V2]Vplf ~ + h6V2P2f 0 (21') 

Equation (21) contains nine constants, namely, (hi, Xl, hl), (h{,h~, hi'), and 
(h4,hs,h6). They can be determined by the aid of the six constraints 
represented by Eqs. (1)-(6) and of three additional requirements which we 
impose on the perturbation f '  =- f - fo, namely, 

f f ,  d~V = 0 (22) 

ff'Vrd3V = 0 (23) 

f f '  v2a3v = 0 ( 2 4 )  

The conditions (22)-(24) simply state that the nonequilibrium deviations 
from the Maxwellian do not affect the particle density, radial streaming 
velocity, and kinetic energy of random motion. 

(21) 

obtain 

f ( V , / 0  = exp[X1 + X2V/~ + X3 V2 + X4 V4 + XsVa/z + X6V2P2(lz) 1 (17) 

where Xl = hi - 1. 
For convenience we write the constants h 1, X 2, and h 3 as follows: 

Y,l = h'~ + hi', h2 = hl + h~,  h3 = - h ;  + hl  (18) 

Using this decomposition in Eq. (17) and assuming that h'{, h i' V/~, h~ V 2, 
h4 V4, ~k 5 V3/.L, and h6VaP2(/x) are small compared to one, one can expand 
the expression (17) in a Taylor series and bring it to the following form: 

f (V ,  ~) -- [1 + h i' + h~ V~ + hj V 2 + h4 V4 + h5 V3/~ + h6V2P2(p,)lf ~ (19) 

where 

f0 = exp(h', + hiV/, - X;V 2) (20) 

Recalling that the first two Legendre polynomials are P0-- 1 and P1 --/z 
one may write Eq. (19) as a sum of a "Maxwellian-type" velocity distribu- 
tion function and three other terms, as follows: 

f =  fo + (h~ + h;'V 2 + haV4)f~ 0 +[(hi '  + hsV2)V]P, f  ~ + h6V2P2f ~ 
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Thus, proceeding as indicated above we obtain the following values for 
the nine constants X: 

X~ = ln(X;/~) 3n 

x~ = 0 (25) 

x; = 3 / 2 (  v ~) 

x~' = - ( 2 / 3 ~ ) V  

)k 4 = (l/15B2))t~ ' (26) 

As = - ( 1 / 5 B ) h ; '  

)t]' = ( ~ -  1 5 B 2 ) / g B  2 (27) 

X'2' = - q f f  n m B  2 (28) 

X 6 = A / 3 B  = (a  - f l ) / 3 B  (29) 

Notice that by (25) Eq. (20) reads 

f o  = (n /2~rB  ) 3 / 2 e x p ( -  V 2 / 2 B  ) (30) 

where m B -  m ( v 2 } / 3  is the average kinetic energy of random motion 
( m B  = E / 3 ) .  

Next, we define two quantities which are related to the moments qa,~ 
and ~a as follows: 

ea,r(r, t) = <('o r - -  ( ' l ) r ) a ) 3 Z  ( 3 1 )  

and 

~a,r(r ,  t )  = <(~r  --  ( l ) r )a)4>a 

The relations between %,~, ~,,, and q.,~, ~a are as follows: 

qa,r = (5m~n. /6)%,~  

and 

(32) 

(33) 

~a = 5[(a,r -- 4(% -- f l . ) B . ]  (34) 

where we used A a =-  oz a - f l a "  [See Eq. (6).] For convenience, we shall use a 
"modified" fifth moment, namely, 

~a,r( r, t) =- <(I)  r - ( l )r)a)  n )  - <(  v r - ( Vr )a)  4)a,Maxw 

= ~,r(r ,  t) -- 3a2a(r, t) (35) 

Here, 3a 2 is the value of ~,~ in the case of a Maxwellian [a = ( ( v ~ -  
(Vr}~)2)a is the radial random mean square velocity]. By (25)-(29) and (31), 
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(32) one obtains 

~a,r + 4(% -- /3a )2/3 
X~',~ = ~ B2 = c~ (36) 

~;,,2~_ - 5 Ea,r--. c ; / B l / 2 ,  (37) 
6 B ~  

1 %  - t3a __ c ~ / B  (38) 
~ka'6 - -  3 B~ -- 

Notice that the results (36)-(38) completely determine the values of X~, ~k 4 
and X 5 [Eqs. (26)]. 

Now, substituting the results (26)-(38) into Eq. (21), after some algebra 
we obtain the result 

fa(rla, (l)r)a,O~a, j~a,Ca,r,~a,r ; V , r ,  t) 
2 

= f~ ,(v~) a ,B a ;V,r,t) + ~,, a2(V)P,(l*) (39) 
n = 0  

where fo, the local Maxwellian distribution function, is given by Eq. (30) 
with B~ = (% + 2/3~)/3 and n a, (v~), B~ being functions of r and t. The 
functions a~(V) are given by 

a~(V)=c~(1 2 V 2 1 V__.~ 4) 
- -5  + 15 B2 fo 

( 1 V2)  V o (40) a ~ ( V ) = c ~  - - l + ~ - ~ a  ~ f 

a ; (V)  = ~ V2 fo c2 B--~- 

With c~, e~', and c~ given by (36)-(38). 
Finally in terms of the more familiar fluid quantities T~ =--ma/K, 

T = mfl/K, and qr = (5/6)mn~,freads 

f =  fMaxwell{ 1 + -~ [~r q- 4(T, - T• T](1 - 2 p2 + ~ ~ 4 )  

+ 7 / ~ V ( - I + � 8 9  T•189  (41) 

where 

+ 2r• 
~ _  V T -  

(KT/m) ' /2  ' 3 

~ -  (KT/m)  2 , qr = nm(KT/m)3/2 



A Variational Derivation of the Velocity Distribution Functions 811 

We recall that to obtain these results we assumed relatively small 
deviations from the local equilibrium state. This assumption was introduced 
through the expansion leading to Eq. (21) which implies that the quantities 
~]', ~2' V/z, )~3' V 2, ~4 V4' )~5 V3#, and ~6P2(/~) V 2 are small compared to unity. 
Mter expressing the )t's in terms of the moments of f and obtaining the 
explicit expression (41) for f, we see that the consistency condition requires 
the smallness (compared to one) of the terms in the curled brackets of (41). 
Thus, the results hold for relatively small thermal conduction, 3 qr (or 
equivalently small skewness of f), thermal anisotropy, T~ - T• and devia- 
tion from the MaxweUian tail, ~. 

Finally, while the skewness and thermal anisotropy of f do not require 
supplementary explanations, the effect on f due to ~ needs some special 
attention. Thus, consider only the term proportional to ~r in (41). Then, as 
is easily seen, the expression multiplying ~, say Q, has two roots, namely, 
vl ~ 1.36 and ~2~2.86. Thus Q > 0 in the ranges (A) 0 < ~ < 1.36 and 
(C), ~ > 2.86; also, Q < 0 in the range (B), 1.36 < ~ < 2.86. Moreover, the 
evaluation of ~ [~r ~ n- l f (v~ - (v~))4(f - fMaxwJ d3v oc f~S(v)dv]  pro- 
vides ~,,A/Co~O.021, ~r ,B /CO ~ - - -0 .911  and ~ , c l c o ~ 2 . 5 0 9 .  Here ~,A 

122 00 = f~'S(v)dv, ~,B = f~,S(v)dv, ~,c = f~2S(v) dv. Thus, practically, ~ does 
not affect the very low energy particles (bulk particles); however, it implies 
a depletion of intermediate energy particles (range B) and an enhancement 
of the tail particles (elongated tail, region C). (We mean changes with 
respect to a Maxwellian, ~r, Maxwell m. 0). Since ~r,C > I r, l and the tail 
population is significantly lower than the population of regions A + B, the 
effect of ~ r 0 on the tail particles can be rather important. 

3. D I S C U S S I O N  A N D  S U M M A R Y  

Using a variational approach based on the minimization of Boltz- 
mann's H function we obtained the most probable distribution function, fa, 
for a spherical nonequilibrium system of Coulomb interacting particles 
(plasmas, stars) defined by the first six velocity moments of fa" The result 
can also be expressed as the sum of a Maxwellian and the first three terms 
of an expansion in Legendre polynomials. The coefficients of the Legendre 
polynomials are themselves polynomials in the relative velocity, Iv - (vr) ] 
and are multiplied by the Maxwellian; they are also proportional to 
quantities involving combinations of the higher-order moments, qa,r, ~,~, 
and (T, - T• 

The constrained minimization used in this work (in which f depends 

3 We notice that even in the simple three-moments equations approach in which the Chap- 
man-Enskog procedure is used in order to calculate qr, one assumes fl << f0 and therefore the 
relative smallness of qr. 
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on its first six moments) and leading to our result represents a generaliza- 
tion of the familiar one leading to the Maxwellian (in which f depends on 
its first three moments) which is usually used in the type of problems which 
motivated this work. Thus, it provides more information about the system, 
through the additional moments it contains. On the other hand, more 
refined kinetic aspects connected with the fine structure of f and pertinent 
to resonant processes are not treatable within the framework of the present 
theory. For this, a fully kinetic description, or equivalently, the consider- 
ation of an infinite number of moments of f would be required, Unfortu- 
nately, such an ambitious approach is impractical for the solution of 
realistic problems, as those which motivated this work. 

Finally, the expression for the most probable velocity distribution 
function obtained here enables one to derive---starting from Boltzmann's 
equation--a closed set of moments equations as follows. First, it relates 
higher (than sixth) order moments to lower-order moments, thus cutting the 
infinite chain of moments equations. Secondly, it enables the calculation-- 
based on Fokker-Planck formalism--of the collisionat transport coeffi- 
cients appearing in the moments equations. Such a closed system of 
equations is absolutely necessary for the description of physical systems 
such as stellar-plasma atmospheres and winds, stellar systems, pellet fusion 
systems, etc. 

Actually, we have already derived such equations by using as an 
ansatz for f a form of the type obtained in the present paper. (4'5) The 
present work provides a rigorous proof and justification of the ansatz 
mentioned above. ~ 9- ~o~ 

The next step will consist of a numerical solution of the six moments 
equations (for each species). As a result, the detailed time and space 
behavior of the sets of six moments of the f's, as well as of the f 's  
themselves, will be, hopefully, obtained. 
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